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ABSTRACT

ADAO 62734

We consider the vector initial value problem
ey = £(y,t,e), y(0) = y%(¢) in the situation when the m x m
matrix fy(y,t,O) is singular with constant rank k < m and
has k stable eigenvalues. We show how to determine the
unique limiting solution Y0 of the reduced problem
f(Yo,t,O) = 0 and how to obtain a uniform asymptotic expan-
sion of the solution which is valid for small values of €
on finite t intervals. A numerical technique is developed
to calculate the limiting solution and the results of some

examples are compared with an existing code for stiff diff-
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erential equations.

1. INTRODUCTION
We consider the initial value problem
ey = £(y,t,¢c) » y(0,¢) = YO(E) (1.1)

for m nonlinear differential equations on a finite interval

0 <t <Tin the limit as the small positive parameter €
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tends to zero. Familiarity with singular perturbation
problems leads one to expect that (under appropriate stabil-
ity conditions) the solution of (1.1) would converge to a

limiting solution Y, of the reduced system

fo(Yo,t) z f(Yo,t,O) =0 (1.2)

as € + 0, at least away from an initial boundary layer region
of nonuniform convergence. For example, in the classical
Tikhonov problem (cf. Wasow (1976)), when the Jacobian Fy
fy(y,t,O) has stable eigenvalues for all y and t (the region
of stability can be further restricted), then (1.2) has a
unique solution Y (t) which is the limiting solution of (1.1)
for t > 0. The solution generally converges nonuniformly at
t = 0 since there is no reason to expect that Y,(0) = y%(0).
Indeed, if f is infinitely differentiable in y and t and has
an asymptotic expansion in € then fhe solution y(t,e) of

(1.1) can be represented asymptotically in the form

$(e,8) = Tle e} + Biz o), (1.3)

throughout O < t < T. The outer solution Y and the boundary
layer correction Il both have asymptotic expansions in €, and
I tends to zero as the stretched (or boundary layer) vari-

able

T = tfe (1.4)

tends to infinity.
We wish to consider (1.1) when matrix fy(y,t,O) is singu-
lar, and in particular satisfies:
Hypothesis (H): fy(y,t,O) has constant rank k, 0 < k <m
for all t in 0 £ t £ T and all y; its nonzero eigenvalues
have negative real parts there; and its null space is
spanned by m - k linearly independent eigenvectors.

In this case we will find that the asymptotic solution of
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(1.1) still has the form (1.3) whenever the reduced system

(1.2) is consistent and solvable, i.e., whenever (1.2) has at
least one solution. However, because foy is singular, (1.2)
no longer has a unique solution and additional analysis is
necessary to determine the unique limiting solution for
t > 0. We call such problems "singular singularly-perturbed
problems". Two simple scalar examples illustrating some of
the possibilities are (i) ey = 1, y{0) = O and
(ii) ey = 0, y(0) = 0. For (i), the reduced problem 1 =0
is inconsistent, and while y = T = t/e is a solution of the
form (1.3) we see that Il becomes unbounded as T + « , For
(ii), the reduced problem O = 0 is satisfied for all Y,, but
only the trivial solution Yj = O is a limit of the unique
solution y = 0.

Campbell and Rose (1978) studied constant coefficient
singular singularly-perturbed problems of the form

ey = F(e)y (1.5)

and showed that the "semistability" condition of Hypothesis
(H) is a necessary and sufficient condition for a limiting
solution to exist for all t > O and all initial vectors yo.
O0'Malley (1978) obtained asymptotic solutiomns of (l1.l1) in the
almost-linear case when f(y,t,0) = F(t)y + g(t), assuming
that the linear reduced system F(t)Y, + g(t) = O is comsis-
tent. A preliminary study of nonlinear systems was reported
in 0'Malley and Flaherty (1976). Additional work on singu-
lar singular-perturbed problems was done by Vasil'eva and
others (cf. Vasil'eva (1976) and the references contained
therein).

Asymptotic solutions with a different structure than (1.3)

might result if initial values were restricted. For example,

consider (1.5) with
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and suppose that the initial components satisfy y? = /E§g,
then we have the trivial solution for t > O, but the boundary
layer behaviour is determined by the stretched variable
o = t/Ve. More complicated limiting solutions would occur if
we allowed "turning points" where the rank of fy(y,t,O)
changes at particular y and t values. Studies of these
interesting and difficult problems are contained in the work
of Howes (1978) and Kreiss (1978). The latter also contains
numerical methods. Two simple scalar examples of such prob-
lems are € = -y> + €y and €y = (t - 1/2)y, where the ranks
of fy(yo,t,O) change at y = 0 and t = 1/2, respectively.

In Section 3 of this paper we develop asymptotic expan-—
sions for the outer solutions Y(t,€) of a special class of

singular singularly-perturbed problems and in Section 4 we

consider more general problems. Some preliminary linear
algebra is presented in Section 2. Expansions for the boun-
dary layer correction II(T,€) and a proof of the asymptotic
validity of our solutions have also been obtained and will be
reported in O'Malley and Flaherty (1978). In Section 5 we
develop a numerical procedure for calculating the limiting

solution Yo(t) which is based on the expansion of Section 4

and in Section 6 we apply this procedure to some examples
and discuss the results.

Our primary motivation for this work is the need to dev-
elop numerical procedures for singularly-perturbed (or stiff)

two-point boundary value problems. However, our results

should be applicable to initial value problems in power gen-
eration and distribution systems, biological and chemical

reactions, and electrical networks. A new application is
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ill-conditioned nonlinear optimization problems (cf. Boggs
and Tolle (1977)).

2. ALGEBRAIC PRELIMINARIES

We shall attempt to find an asymptotic solution of (1.1)
in the form given by (1.3). The decay of il as T + = implies

that the outer solution Y(t,e) should satisfy

ey = f(y,t,e) (2.1)
as a power series in €, i.e.,
Y(t,e) ~ £ Y.(t)ed. (2.2) ]
j=0 !

Under Hypothesis (H) we are guaranteed that
= = g_g_
£y (08) = £,(3,£,0) = 52 (3,¢,0) (2.3)

can be put into its reduced echelon form by an orthogonal:
matrix E(y,t). Golub (1965) discussed a numerical prccedure
for obtaining E by performing a sequence of k Householder
transformations. The differentiability of E follows that cf
f, under the constancy of rank condition (cf. Golub and

Pereyra (1976)). We partition E as

E,
E = (2.4)
EZ
where E, is k x m, E, is (mk)Xxm, and w
E, ny =0 (2.5)
In addition,
T S X
Efo E" = (2.6)
y 0 o




e

s=Ef E , X=Ef E |, (2.7)

Hypothesis (H) guarantees that S has k stable eigenvalues.
We note that Clasen et al (1978) used such constant ortho-
gonal matrices E to integrate stiff problems, while 0'Malley
(1978) used time dependent matrices for almost linear prob-
lems.

The orthogonality of E further implies that

T , T
EE, =0, ElEl = Ik - E2E2 = Iurk , and (2.8)
T T
E1E1+ E2E2 = Im =

where Im is the m *x m identity matrix. Using the last rela-
tion we introduce the complementary orthogonal projections

T 2 :
P =EE, , Q=EE, (2.9

which provide a direct sum decomposition of m-space with Q
projecting onto N(fos), the null space of fog, and P project-
ing onto R(foy), the range of foy.

3. A SPECIAL PROBLEM: E(y,t) = E(t)

In this section we examine special problems (l.1) when the
orthogonal matrix E(y,t) introduced in Section 2 is indepen-—
dent of y. This, of course, includes the nearly linear prob-

lems where
f(y,t,0) = F(t)y + g(t)

and "classical" singular perturbation problems having the

form
ey) = £,(5157,,t) + €81(y1,¥;t5€)
E}.’z ok egz(yl’yzttye) .

Here, Y, is a k-vector, Y, is an (mk)-vector, and 8f1/8y1 is
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of rank k. In this case E = Im'

We define

zZ ™ E(t)Y- (3-1)

and further partition z like E, i.e.,

[ : [ e . (3.2)
z, 3 Ezy b :

Introducing (3.2) into (1.1) gives the following system for

. s - 0
€2, hl(zl,zz,t,e) » zl(O) El(O)y (3.3a)
E 2, = hy(z),2,,t,6)/e , 2,(0) = E,(0)y’ (3.3b)
where,
h, = E.£(E'z,t,€) + cE.E'z {e1,2 (3.4)
i i 'Ly i ’ 3y &ie .

We have divided (3.3b) through by € since
hz(zl,zz,t,o) =0 ' (3.5)

necessarily follows if the reduced system (1.2) for (1.1) is

consistent. This is because

3h2 T T
3;; (zl,zz,t,o) = E2f0y(E z’t)Ei =0 5 1= 12

upon use of (3.4) and (2.5). Thus, hz(zl,zz,t,O) is a func-
tion of t only. However, the reduced system (1.2) implies

the corresponding reduced system
hi(zl,zz,t,o) =0 oy 1= 12

for (3.3). Hence hz(zl,zz,t,O) must be the trivial function

of ton0 <t =T for any z, and z,, otherwise (1.2) would

1
have no solutions. Tikhonov's results apply to (3.3) because

his stability condition that




%y T T
'3?;(21’22’t’0) = Elny(E z,t)E1 =9 (3.6)

have stable eigenvalues holds for all z;, z, and for all t on
0 £t <T. Thus, (3.3) has an asymptotic solution of the
form ‘
zl(t’e) = zl(t,e) + Al(r,e)
(3.7)
zz(tye) » Zz(t’e) + EAZ(T:E)
(cf. O'Malley (1974)), where the outer solutionm (Z,,Z,) and

the boundary layer correction (A ) each have power series

1’A2
expansions in € with the boundary layer correction decaying
to zero as T = t/€ +> @,

Since the outer solution provides the asymptotic solution

for t > 0, we must have
o, = (S 2y t,8) o Zy = BulBy, Byt 0)le (3.8)

satisfied as power series
-]

. b . o
Z,(t,e) ~ I Zij(t)e s Low=1,2, (3.9)
3=0

in €, The leading term must necessarily satisfy the limiting
problem

h)(Z,0:2,,t,0) =0 (3.10a)

) &= 0

Zy0 = hze (Z1452545t,0) 220(0) = E,(0)y"(0). (3.10b)
Its unique solution is obtained since (3.6) and the implicit
function theorem imply that the algebraic equation

hl(Zlo,Zzo,t,O) = 0 can be uniquely solved for the k-vector
Z)o(8) =8z, (), t) (3.11)
leaving the nonlinear (mrk) th order initial value problem

oh
2y = 5 0(Z,0,8), Z,0,t,0) , 2, (0) = E,(0)y0(0) (3.12)

S ——




for Zzo. We shall assume that the unique solution to (3.12)
continues to exist throughout 0 < t < T. Note that the re-
duced system (1.2) implied that both b, = 0 and h2 = 0 along

(z Zzo,t,o), but it did not provide equation (3.12) needed

10°
to uniquely determine the limiting outer solution (ZIO’ZZO)'
Higher order terms in (3.9) satisfy linear problems

dh sh

1 2 . E
‘a_z—l (ZIO’ZZO’t’o)le + 322 (ZIO’ZZO’t’O)ZZj 81,j_l(t)
: 32h2 32h2 S50
= —— . +
zzj azlae (Zlo’zzo’t’o)zlj i azzae (z10’220’t’0)221

gz’j_ft) » sz (0) -~ —AZ, (0)

j-1
with the éi’j_l(t)'s determined by lower order terms in the
outer expansion. One solves the first equation for le as a
linear function of sz, and then the resulting linear differ-
ential equation for sz. Thus, the outer expansion (3.9) can
be uniquely generated termwise in O < t < T up to a knowledge
_ of the initial value of the boundary layer correction compo-
nent AZ(O,E).

The boundary layer correction is obtained by noting that
both (zl,zz) and (Z,,Z,) satisfy the differential equationms
(3.3). Hence, using (3.8) in (3.3) we have

dA1

—_— hl(Zl(er,e) + AI(T,E),ZZ(ET,E) + EAZ(T,E),ET,E)

-hl(Zl(er,e),Z (eT,€),e1,¢€) (3.14)
dA <
15? = [hZ(Zl(et,e) + AI(T,e),ZZ(sr,e) + eAz(r,e),er,e)

-hz(Zl(er,e),Zz(er,e),er,e)].

We require A and A2 to decay as T + « and satisfy the ini-

tial condition

A, 0,€) = El(O)yo(O) - 2,(0,€). (3.15)




—

Taking
-5 J : =
Ai(r,s) ij Aij(r)e i=1,2 (3.16)

we find that the leading term Ajy must satisfy the nonlinear

initial value problem

dAlo

dt

= h,(2,,(0) + 4, (1),2, (0),0,0) |
h,(z,,(0),2,,(0),0,0) , (3.17)
S 0(0) -
AIO(O) El(O)y (0) 210(0)-

This problem has a unique exponeg{ially decaying solution
1

Alo(r) since (3.6) implies that e (zl,z ,t,0) has stable

eigenvalues for all arguments. iiéwing Ajo we can calculate
Azo and successive terms in (3.14). The details of this cal-
culation are omitted here as they will be reported elsewhere
(cf. 0'Malley and Flaherty (1978)).

The asymptotic validity of the expansion (3.9) follows
from Tikhonov's thecrem (cf. Wasow (1976) or Vasil'eva and
Butuzov (1973)). Returning to the original variables, we
have found a unique asymptotic solution of the form (1.3)

with the outer solution given by
T(t,e) = EN(6)Z,(t,€) + Ey()Z,(t,€)

and with the exponentially decaying boundary layer correction

given by
T 4y
M(t,e) = El(er)Al(T,e) + eEz(eT)AZ(T.E).
The result will even be valid for all t 2 O provided that Z20
decays exponentially as t + = (cf. Hoppensteadt (1966)).
4, THE ORIGINAL PROBLEM

We now return to the original problem where the orthogonal

matrix E can depend on y as well as t. As noted in Section

2, the outer solution (2.2) should satisfy the system (2.1)




as a power series in € for t 2 0. The leading term in the
expansion will satisfy (1.2) and, for j 2 1, fy(Yo’t’o)Yj
will be successively d«termined by the preceding Yl’

£ =0,1,..., j-1. This fails to uniquely determine the Yj's
since fy(Yo,t,O) has rank k < m. We shall instead find them
as solutions of differential equations. To this end, we

differentiate (2.1) with respect to t to obtain.
fy(Y,t,e)Y * £ (T e,e) = £¥ (4.1)

and use (1.2) and (4.1) together.

We define Elo(t) = El(Yo(t),t) and let Ezo(t)’PO(t)’ and
Qo(t) be analogously defined. From (2.8) and (2.9) we see
that P0 + Q0 = Im; thus, we can write

I ~P Y 0% (4.2)
and seek to obtain equations for Pof and Qoé. In particular,
(4.1) and (4.2) imply

Eofy (Yot,e) (B Y + QU = &, £ * o).

Using the stable matrix
- 1

SO = Elofy(Yo,t,O)Elo (4.3)
and (2.9) we have

PoY = -Ag{I£ (Y,t,€) - £ (Yy,t,0))P0Y (4.4)

+ fy(Y,t,s)QoY * £ (Y, e,0) - Y}

where,

By = By 5o Bogs (4.5)
From (2.1) we have
Oyt = QOf(Y,t,e)/e. (4.6)

Using (4.3) and (4.6) in (4.2) we find




Y =- AO{[fy(Y,t,C) - fy(Yo,t,O)] ¥+ £, (Y,t,¢e)
- €Y} + Boqong,t,e)/e
where

BO e S Aofoy. (4.8)

It may be useful to note that B0 is a projection with
B,P, = 0, B,Q =By, and BA =0.
Setting € = 0 in (4.7) yields the limiting nonlinear equa-

tion

Y0‘=—A0ft(Yo,t,0) + BOQOfe(YO,t,O) | (4.9)

We note that the term Qofoy(Yo,t)Y1 is missing since Qofoy_=0
upon use of (2.5) and (2.9).

In order to obtain further coefficients Yj it is necessary
to consider the coefficients of higher powers of ¢ in (4.7).

Thus, setting

«©

£(Y,t,8) ~ I £.(Y,t)e) (4.10)
j=o

and using the expansion (2.2) for Y implies that
f(Y,t,e) = fO(YO,t) + e[fl(Yo,t) + ny(Yo’t)YI]
+ g2 +
€ [fz(Yo’t) + foy(Yo,t)Y2 f1y(Yo’t)Y1
1
= 3
s (nyy(YO’t)Yl)YI] + 0(e”)
together with corresponding expansions for ft(Y,t,e) and

fy(Y,t,e). The coefficient of € in (4.7) then provides the

following nonlinear equation for Y,

Yook le, 08,0 ¢ fOty(Yo,t)YI + [fly(Yo,t)

+ foyy(Yo,t)Yl][PoYo + Qofl(Yo,t)] - YO}

1
+BQ, {£,(¥,,t) + fly(Yo,t)Y1 + 5[f°yy(Yo,t)Y1]Y1}

s v ——




F __———-——

Except for the final quadratic term, this is a nonhomogeneous
linearization of the equation for Yo. Higher order terms
-Yj, j22, satisfy linear differential equations with success-
ively known nonhomogeneous terms.

We note that it may be advantageous to obtain differential
equations for the successive terms Y. of the outer expansion
even in the special case (see section 3) where E(y,t) is
independent of y. In that case, we solved the nonlinear
algebraic equation (3.10a) for Zlo.as a function of Z,,,
followed by a nonlinear initial value problem (3.10b) for
Z_ . It may often be numerically simpler to solve the ini-

20
tial value problem (4.9) for Yo(t) and those for later terms

successively. We have not, however, fully explored both
possibilities.

We will have to assume, of course, that the nonlinear
initial value problems, (4.9) and (4.11), for Yo and Y1 have
solutions on 0 £ t £ T. Moreover, since (1.2) and its time
derivative (4.1) are built into (4.7), consistency with (1.2)
at t = O implies consistency of the outer expansion for
t > 0. If consistency failed, the form (1.3) of the solution
would be inappropriate. Thus, using (1.2), (2.1), (2.2), and

(4.10), we must have

fO(Yo(O)’O) =0,

foy(YO(o)’O)Yl(O) = ?0(0) = £, €Y (00,0) , (4.12).

These equations always have a solution under our assumptions.
For example, in the second equation we must have

74(0) - £,(¥((0),0) in the range of £, (¥4(0),0). Recall,

f however, that Im =P, +Q provides a direct sum decomposi-

tion of m space with




R(Q,) = N(£, (Y5(0),0)) and R(P,) = R(f, (¥,(0),0).

Thus, the second of (4.12) will be automatically satisfied
since Qfoy = © implies that Qo[?o(O) - £,(Y,(0),0)] = 0.

Because foy has rank k, k components of YO(O) are deter-
mined as a function of the remaining m-k components.

Indeed, we could attempt to solve (1.2) for E1o(°)Yo(°) in
terms of EZO(O)YO(O) since SO(O) (cf. (4.3)) is nonsingular.
Likewise, for j > 0, termwise determination of
foy(Yo(O),O)Yj(O) implies that of EIO(O)Yj(O) (by an argument
similar to the one preceding (4.3)). Thus, EIO(O)Yj(O), or
PO(O)Yj(O), is determined termwise while EZO(O)Yj(O), or
QO(O)Yj(O), may be specified. The purpose of the boundary
layer correction is to compensate for the jump in
PO(O)(Yj(O) - yg) and to specify the values of QO(O)Yj(O),
j2zo0.

Once again, the representation (1.3) and the fact that the
differential equation (1.1) is satisfied by both y and Y
imply that the boundary layer correction II(T,€) must satisfy
the nonlinear equation

dn

37 = f(¥(et,e) + M(1,€),e1,e) = £(¥(eT,¢€),¢T,¢) (4.13)
as a power series
N(t,e) ~ £ N.(1)el (4.14)
j=0

in € and decay to zero as T + w, Moreover,
M(0,e) ~ y%(e) - Y(0,¢). (4.15)

The details of the calculation of the boundary layer cor-
rection and a proof of the asymptotic validity of the solu-
tion are omitted here and will be presented in O'Malley and

Flaherty (1978). We summarize our findings, however, in the

following theorem.




Theorem: Consider the initial value problem

€y

= f(y,t,e) , y(0) = yO(e)

+
for an m-vector y as € - O . Assume that:

(1)

(ii)

(iii)

(iv)

(v)

f is infinitely differentiable in y and t and f and

y%(e) have asymptotic series expansions in powers of €.

There exists an infinitely differentiable orthogonal

matrix E(y,t) for all y and for t in the interval

0 =t =T such that E(y,t)fy(y,t,o) is row-reduced and

of rank k, 0 £ k < m. Moreover, partitioning E after

its first k rows as in (2.4), we have

i T S X
Ef (y,t,0)E" =
y 0 0

where S = Elfy(y,t,O)Ef is a stable matrix for all
values of y and t.

The nonlinear system

f(Yo(O),0,0) =0 (4.16a)

Q(¥,(0),0) [y *(0)-¥ (0)

+ J f(YO(O) + HO(T),O,O)dT] =0
0

can be uniquely solved for YO(O). Here, Ho(r) is the

decaying solution of

dn
0 - -
Jo = £(¥,(0) + 1 (1),0,0) f(Yo(O),O,O).

——(r -
HO(O) yY(0) YO(O).
The matrix
I- COEIO(O)BO(YO(O),O)

is invertible for a particular matrix Cye (This
insures that YI(O) may be uniquely determined.)

The initial value problems (4.9) and (4.11) have

(4.16b)




solutions on the interval 0 < t < T.
Then, the initial value problem (1.l1) has a unique solution

of the form
y(t,e) = Y(t,e) + N(1,€).

Some comments on this theorem are listed below.
(1) Hypothesis (ii) is guaranteed by out earlier Hypo-
thesis (H).

(ii) The theorem is easily obtained from Tikhonov's result
if E(y,t) is independent of y. It is considerably
simplified if only EZ(YO(O)’O)’ and thereby Q(YO(O),O),
is independent of YO(O). In this case (4.16b) reduces

to the linear equation
Q,(0) [y%(0) - ¥ (0)] =0 - (4.17)

and (4.16a) becomes a nonlinear equation for
PO(O)YO(O)' It can be further shown that the inverti-
bility condition of Hypothesis (iv) then will be auto-
matically satisfied.

(iii) Higher order terms follow without complication under
these hypotheses.

(iv) Vasil'eva (1976) considers such problems under a list

of ten hypotheses, generally paralleling, but more
restrictive than ours. Her most critical assumption

involves the existence of a k-dimensional manifold of

: decaying solutions for HO(T) which can, more or less,

be stated in the form
EZO(O)HO(r) = ¢(E10(O)Ho(r))

for a particular function ¢ and for all T and YO(O).

i At T = 0, we would have

E,,(0)[y%(0) - Y (0)] = o(E,  (0)[y°(0) - ¥ (0)])




where YO(O) must also satisfy the reduced equation at
T = 0. This analog of Hypothesis (iii) should
uniquely determine YO(O) so that the resulting HO(O)
lies on the manifold of initial values corresponding

to decaying solutions of HO(T).

5. NUMERICAL ALGORITHM

We have developed an algorithm based on the asymptotic
analysis of Section 4 to calculate the leading term Yo(t) in
the outer solution. For most problems it is possible to
calculate numerical solutions without explicitly identifying
a small parameter ¢; thus, we consider initial value problems

in the form

y = £(y,t,e) = £(y,t,e)/e , y{0) =y (e). (5.1

The €, although shown in (5.1), is to be regarded as uniden-
tifiable. However, if the actual limiting solution is
desired, the evaluation of ¥ in (5.1) causes overflow, or

the order € terms in f are close to the unit roundoff of the
computer relative to the order unity terms in £, then a value
of € can be identified and the initial value problem can be
written in the form of equation (1.1). The actual computer
code is capable of handling both cases, and all that the user
need do is define f as in (5.1) or £ as in (1.1).

The algorithm consists of two parts: (i) calculating the
initial conditions YO(O) for the outer problem and (ii)
integrating the differential equation (cf., (4.9)) for Yo(t).
We first describe the integration procedure.

The differential equation (4.9) for ¥, is not stiff;
hence, any good code for integrating non-stiff initial value

problems may be used. We use both the Adams' methods that

are incorporated into the Hindmarsh (1974) version of Gear's
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code and the IMSL version of the Bulirsch and Stoer (1966)

extrapolation procedure. Both of these codes require the

evaluation of io as a function of Yo and t, and we accom~

plish
(1)

(i1)

(1ii):

this as follows:

Calculate E(Yo,t) by decomposing fy(Yo,t,e). It is not
necessary to set € to 0 unless € has been explicitly
recognized and the actual limiting solution is desired.
Golub's (1965) procedure, which uses a sequence of k
Householder transformations with column pivoting, is
used to obtain E. At the v th step, 1 < v < k, of this
procedure we have

U v
E(“)(Yo,:)fy(Yo,t,e) = KT
0 W

where, U is v x v and upper triangular, V is

v x (m=v), and K is a permutation matrix due to the
column pivoting. The procedure terminates, and the
rank k of Ey is determined, when the maximum available
pivot element in W is small relative to the diagonal
elements of U. We then have E = E(k). The decomposi-
tion is not performed at every time step, but, rather
a test is used to determine if E has changed by too
much. Thus, the same matrix E may be used for several
time steps or, when E is constant, for the entire
integration. If at any stage of the computation the
rank k of Ey changes, a turning point has probably
been encountered, and the integration is terminated.

Partition E into El and E2 as in (2.4). Calculate

T 2 T
Q E2E2 and S = E1fy(Y0’t’€)E1'

Calculate Qfo = Qf(Yo,t,e) and b = -Ellft(Yo,t,e)
+ fy(Yo,t,e)(Qﬁo)]. When € is explicitly recognized
Q¥, is calculated as Qf (Y, t,0).




(iv) Solve S(EIQO) = b for EIQO by Gaussian elimination and
calculate

. T °
PYO EI(EIYO)'

Calculate Y = PY + QY .
(v) Calculate . . Q o

We now turn to the calculation of the initial conditions
YO(O) for the outer problem. This is a difficult task when
E2 depends on y. It requires the solution of the nonlinear
system (4.16) and the computation of the boundary layer solu-
tion Ho(r), which itself depends on YO(O). It is possible
that the integral in (4.16b) may be adequately approximated
by a very crude quadrature rule, which would greatly simplify
the computation. Miranker (1973) has successfully used such
a technique on stiff problems, but we have not as yet
explored this possibility. Our code has only been implemen-
ted for problems where E2 is independent of y; thus, when €
is not explicitly recognized YO(O) is determined as the solu-
tion of

£(v,(0),0,e) = 0 '
E,[Y (0) - y%(e)] = 0 i
AL y (e -
A Newton like iteration—scheme, which closely parallels the
computation of éo(t) is used to solve this nonlinear system.

The procedure is outlined below.

(©) £ _ 0

(i) Select an initial guess X for YO(O), e.g., =y
and set u = 0,
(ii) Calculate E(u) by decomposing Ey(x(”),o,e). This is

performed as in step (i) of the procedure for

calculating ?0. If E1 is independent of y then this

step need only be performed once.
(iii) Calculate Q

ous procedure.

(u) (w)

and S as in step (ii) of the previ-
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Q(“)(y°-x(")) and
b . -Ef")[E(x("),o,e) + Ey(x‘“?c,e)q(”’l)]

(iv) Calculate q(u*l) =

(v) Solve S(U)[Egu)(x("+l)- x(“))] P for Ei”)(x(”+1)-

) L GO T(p() (x(ue)

-X(u)) and calculate p (E,

-X(“))]

; (vt} g M L 300 p(u+1) - q(“*l).

(u+l) _

If ” X x(“) “ is less than some prescribed tol-

e . +
ARy erance set YO(O) = X(u 1

, otherwise increment u by 1
and repeat steps (ii) through (vi).
Of course, if the problem is almost linear then only one
iteration need be performed.
The entire procedure was successfully applied to several

examples, some of which are discussed in the next section.

6. NUMERICAL EXAMPLES AND DISCUSSIONS OF RESULTS

In this section we present and discuss the results of
three examples comparing our method of Section 5 with Hind-
marsh's (1974) version of Gear's code for stiff differential
equations. Both the Adams' methods that we use to integrate
the reduced differential equation and Gear's stiffly stable
methods are contained in this code, and the user sets a
k parameter to select the appropriate method. Hindmarsh's
code and the IMSL Bulirsch and Stoer code also require the
! user to select an estimate for the relative local
discretization error and an initial step size for the integ-
ration. In all cases we selected the relative error toler-

ance as 10'6. This is perhaps a bit too severe for our




methods, because if the problem is not very stiff the reduced
solution will be calculated with more accuracy than neces=-
sary. The initial step size was selected as 10-“ for Adams'
methods, 1/10e for Gear's methods, and 1 for Bulirsch and
Stoer's method. We found that the IMSL code was extremely
sensitive to the choice of the initial stép size and the
times for the integration varied quite dramatically depending
on this choice. Our choice of unity seemed near optimal for
the problems that we considered.

In the tables that follow five numerical solutions are
compared. The solutions labeled "asymptotic'" were calculated
by our method without explicitly recognizing € and using
either the Hindmarsh (Adams) or the IMSL codes; those labeled
"Gear" were solved by Hindmarsh's (Gear) code; and those
labeled "reduced" were calculated by our method with € expli-
citly set to zero. Additional headings in the tables are as
follows:

e is the maximum difference in any component, times 106,
between a numerical solution and the exact solution at
terminal time T. For our asymptotic or limiting solu-
tions
e = max lYoi(T) - yi(T)I x 106.

1<i<m
In general, for the examples considered, the error was
fairly constant outside of the initial boundary layer.

d when the exact solution is not known, we have tabulated
the maximum difference in any component, times 106,
between solutions obtained by our method and those by
Gear's code at terminal time T.

NFE For our asymptotic or limiting solutions this denotes
the number of times that io was evaluated during the

course of the integration. For Gear's solutions it

el ea— - ——— - TR
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denotes the number of times that § was evaluated.

NJE For Gear's solutions this denotes the number of times
that gy was evaluated during t?e course of the integ-
ration. Our methods evaluate fy each time Yo is eval-
uated.

CP Time in milli-seconds to integrate éhe problem, exclu- 4
ding input/output and supervisor state time. Except
where noted it includes the time necessary to calculate
the initial conditions YO(O) by our method. In most
cases the times are averaged over several runs. All ]
calculations were performed on an IBM 360/67 at the
Rensselaer Polytechnic Institute.

CPrel CP time relative to the fastest execution ﬁime. i
The individual examples are discussed below.

Example 1:
(1/e-1) 2(1/e-1) "] 1

¥ - y, y(0) = » 0SEtST =1,
-(1/e-1) =-(2/e-1) 1

This constant coefficient example is an adaptation of one
considered by Gear (1971). The exact solution is

2 -3e-t/€

be

y(t) =
-2e "'3e"':/E

The results are compared in Table 1 for € = 10-1, i=2,4,6,8.
They are typical of the results of subsequent examples in
that they show that the accuracy of our method increases as
the stiffness increases without an increase in computational
effort. On the average, our asymptotic and reduced solutions
required 5 milli-seconds to calculate the initial conditions

for the outer problem.

- . S e — ——— - e r—




TABLE I

Summary of Results for Example 1

=2

€
-y

METHOD 10 10 10 10
Asymptotie e 11100, 111. 1.81 .0130
(Adams)
NFE 34 34 34 3
cP 135 137 138 129
£ et 1.57 1.60 1.62 1.51
Asymptotic e 11100. 110, 1.10 .00171
(IMSL)
NFE 33 33 33 33
cp 89.1 89.8 91.0 89.8
oF el 1.04 1.05 1.05 1.05
Rediced e .126 .701 .701 .701
(Adams)
NFE 34
cP 135
SE el 1.58
Reduced e  .000309  .000309 .000309 .000309
(IMSL)
NFE 33
cp 85.5
EE el 1.00
Gear e 3.51 7.61 8.85 4,40
NFE 158 183 188 195
NJE 17 2 25 27
cP 332 396 407 422
CPrel 3.89 4.63 .75 4.9

e T ——————————




TABLE II

Summary of Results for Example 2

€
METHOD R 10°° 1078
Asymptotic e 300. 1.98  .640 .666
(Adams)
NFE 46 46 56 46
cP 196 192 188 196
CRoel  1.36 1.33 1.3 1.37
Asymptotic e  301. 2.65 .0284 .00223
(IMSL)
NFE 49 49 49 49
- CP 154 150 152 148
o : e Pre1  1.07  1.05  1.06 1.03
Reduced e . 31k, 2.81 .688 .667
(Adams)
NFE 46
cP 187
Cleei - 1.3
. Reduced e 214, 2.14 .0201 .00175
(IMSL)
NFE 49
CP 144
CErel 1.00
Caar " 541 1.26  3.93 3.97
NFE 167 191 196 203
NJE 20 25 26 28
CP 341 399 406 421
cp

rel 2.38 2,78 2.83 2.93




TABLE III

Summary of Results for Example 3

€
-4

-6

METHOD 10 10 10 10
Asymptotic d 317. 3.39 .352 .358
(Adams)
NFE 30 30 30 30
CcP 170 170 170 172
R et 1,66 1.66  1.66 1.68
Asymptotic  d 317. 3.56 440 kb
(IMSL)
NFE 21 21 21 21
CcP 108 107 107 107
CF i 1,05 = 1.05 1.0 1.05
Reduced d 1217. 12.0 .269 .358
(Adams)
NFE 30
CcP 165
CPtel 1.61
Reduced d 17 12.1 411 445
(IMSL)
NFE 21
cp 102
CPml 1.00
Gear NFE 143 144 150 158
NJE 17 19 21 23
cP 343 365 380 400
F el 3.35  3.57 3.72 3.91

e —
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TABLE IV

Time to integrate from t=0 to t = T = 10e for Example 3

€ Asymptotic  Gear
(Adams)
NFE CP NFE NJE CP d CP
ratio
1o'i 12 82.9 119 14 316 451. 3.81
10'6 5 52.1 121 15 341 4.81 6.54
1o'8 ;S % 15 342 .0361 9,22
10° N 4 S 15 341 .0231 9.12

TABLE V

Time to integrate from t=0 to t = T = 1 for Example 3
using initial conditions for the outer problem (results
for € = 0 are the reduced solution)

Asymptotic/ Asymptotic/ Gear
Reduced Reduced
(Adams) (IMSL)

CcP CP

. rel NFE NJE CP “‘rel

¢ NFE CP Prel NFE CP

1072 30 142 1.87 21 79 1.04 54 6 103 1.36

106 30 141 1.87 21 79 1.046 56 5 102 1.35
100 30 141 1.87 21. 79 1.04 43 8 100 1.32

-8
10 30 143 1.89 21 78 1.04 51 10 118 1.55

0 30 138 1.83 2t o 1.00

Example 2:
1 &
()L = 50,401 = 75 (pmy)) -2
y ¥(0) =

e 1
y = =
2 (y1+y2)[l = ;(y1+y2)2] + = (yZ'yi') 0

0<sts<T=2




This nonlinear problem was contrived so that the orthogonal
matrix E is constant and the exact solution is known as
y,(8) = (6 =n)/V2  y,(t) = (£ +n)/2

with

- o 1-1/¢ -€
R 4 _;_e-Zt/e) 1/2 SRRV WL ( )

1+1//2

The results are presented in Table 2 and éenerally parallel
those for Example 1. The average time required to calculate
the initial conditions for the asymptotic and reduced solu-

tions was 24 milli-seconds

Example 3:
(y3-y,y3)-ey 1
= 1
¥ = £(y,e) = = 2(y,y5y2) +ey ,y(0) = | 0 | , OstsT = 1
G o S 1

This example arises in chemical reactions and was studied by
Vasil'eva (1976). She did not specify the €y, terms in £
nor the initial conditions and they were selected by us
rather arbitrarily. The Jacobian fy(y,O) of this system has
rank 1 for all y # O and it may be row-reduced by a constant
orthogonal matrix E. The results of this example are pre-
sented in Table 3. The average time required to calculate
the initial conditions for the asymptotic and reduced solu-
tions was 28 milli-seconds.

Our method is to be used on problems where the boundary
layer solution is not of interest; hence, we should be able
to calculate the initial conditions for the outer problem
faster than a stiff differential equation solver could in-
tegrate through the boundary layer. In order to provide
some evidence that this is the case we solved Example 3 in

the interval 0 £ t < 10e (the approximate boundary layer

RS0




region) using Gear's methods and our asymptotic method with

the Adams' integrators. The results are presented in Table
4 for € = 10-1, i=2,4,6,8. The CP times for our method
includes both the times to calculate the initial conditions
and to integrate the outer problem from t = 0 to 10e. To
make the comparison somewhat more fair we re-evaluated E
after each iteration, even though it is constant for this
example. For € < 1066 we see that our method can calculate
the solution at the edge of the boundary layer region
approximately 9 times faster than Gear's methods.

A comparison of the results in Tables 3 and 4 shows that
about 90% of the time required to integrate Example 3 from
t = 0 to 1 by Gear's code is devoted to the boundary layer
region for e < 10-“. This suggests the possibility of using
our method to calculate the initial conditions for the outer
problem and then using a stiff method to integrate the ori-
ginal differential equation. This test was performed on
Example 3, and the results are reported in Table 5. All
methods use the same initial conditions, i.e., those gener-
ated by our method. The CP times required to calculate
these conditions are not included in Table 5. The differ-
ence between any two computed solutions is less than
3 x 10-“. While the results are far from conclusive, they
do show the extra computational effort that is required by
Gear's method for very stiff problems.

The state of the art of numerical methods for stiff
initial value problems for ordinary differential equations
is very well developed (cf. Enright et al (1975)) and a
variety of good techniques exist. Nevertheless, there are
many problems, particularly in chemical reactions, where
asymptotic methods should be useful. They may be used to

calculate accurate solutions of very stiff problems, to




furnish initial conditions for standard stiff integration
routines, and/or as an analytical tool to provide qualitative
information about the solutions of stiff problems. In future
papers we hope to extend our calculations to initial value
problems where E depends on y and to consider boundary value

problems.
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